

< Low Noise GaAs HEMT > MGF4941CL

Micro-X type plastic package

DESCRIPTION

The MGF4941CL super-low noise InGaAs HEMT (High Electron Mobility Transistor) is designed for use in K band amplifiers.

FEATURES

Low noise figure @ f=25.2GHz NFmin. = 2.4dB (Typ.)

High associated gain @ f=25.2GHz Gs = 10.0dB (Typ.)

APPLICATION

K band low noise amplifiers

QUALITY GRADE

GG

MITSUBISHI Proprietary

Not to be reproduced or disclosed without permission by Mitsubishi Electric

Outline Drawing

Fig.1

RECOMMENDED BIAS CONDITIONS

 V_{DS} =1.5V, V_{GS} =0V

ORDERRING INFORMATION

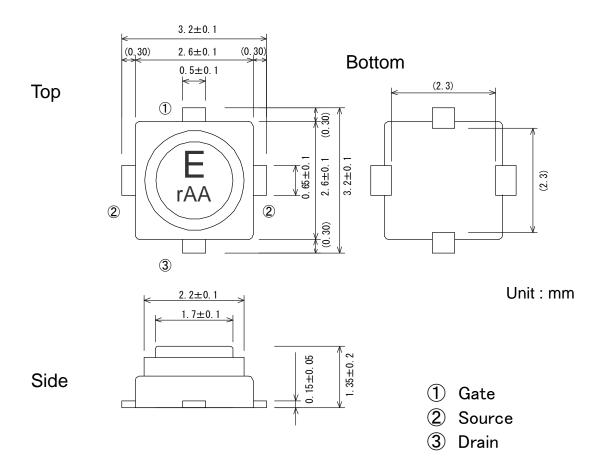
Tape & reel 4000pcs./reel

RoHS COMPLIANT

MGF4941CL is a RoHS compliant product. RoHS compliance is indicated by the letter "G" after the Lot Marking.

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Ratings	Unit
VGDO	Gate to drain voltage	-3	V
VGSO	Gate to source voltage	-3	V
ID	Drain current	55	mA
PT	Total power dissipation	75	mW
Tch	Channel temperature	125	°C
Tstg	Storage temperature	-55 to +125	°C


ELECTRICAL CHARACTERISTICS (Ta

(Ta=25°C)	

Symbol	Parameter	Test conditions	Limits		Unit	
			MIN.	TYP.	MAX	
$V_{(BR)GDO}$	Gate to drain breakdown voltage	IG=-10μA	-3			V
IGSS	Gate to source leakage current	VGS=-2V,VDS=0V			50	μΑ
I _{DSS}	Saturated drain current	VGS=0V,VDS=1.5V	15		60	mA
V _{GS(off)}	Gate to source cut-off voltage	VDS=1.5V,ID=500μA	-0.1		-1.5	V
Gs	Associated gain	VDS=1.5V,	7.5	10.0		dB
NFmin.	Minimum noise figure	VGS=0V,f=25.2GHz		2.4	3.8	dB

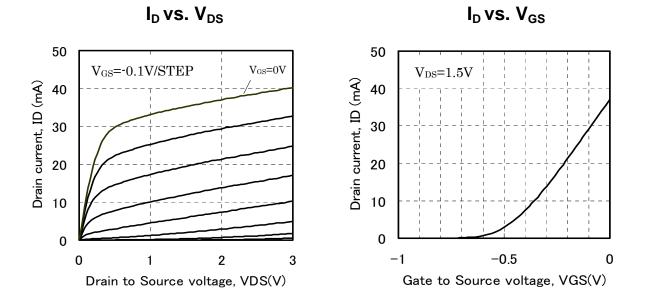
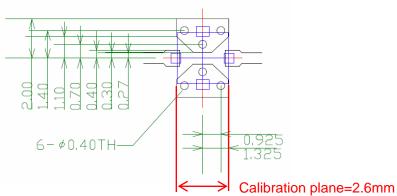

Note: Gs and NFmin. are tested with sampling inspection.

Fig.1


(GD-32)

TYPICAL CHARACTERISTICS (Ta=25°C)

Freq.	S	11	S21		S12		S22	
(GHz)	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)
1	0.991	-16.4	6.159	163.9	0.011	76.4	0.583	-11.9
2	0.969	-32.6	5.982	148.6	0.023	68.1	0.578	-23.3
3	0.939	-47.6	5.736	134.0	0.033	58.2	0.569	-33.5
4	0.893	-60.7	5.511	120.2	0.042	49.2	0.565	-44.4
5	0.865	-75.0	5.284	106.8	0.049	40.6	0.543	-52.4
6	0.819	-88.0	5.024	94.1	0.056	32.8	0.528	-59.0
7	0.778	-101.1	4.864	81.5	0.063	24.9	0.510	-65.5
8	0.722	-113.8	4.721	69.0	0.069	17.0	0.491	-72.9
9	0.657	-126.4	4.595	57.1	0.075	9.3	0.473	-80.6
10	0.586	-139.8	4.479	44.8	0.080	1.9	0.454	-89.0
11	0.516	-155.5	4.354	32.3	0.084	-6.0	0.431	-97.0
12	0.463	-173.4	4.250	19.9	0.089	-12.2	0.405	-104.4
13	0.427	165.7	4.137	7.6	0.094	-19.3	0.372	-111.9
14	0.412	144.9	4.026	-5.1	0.098	-26.4	0.336	-119.7
15	0.412	125.2	3.945	-17.6	0.103	-33.7	0.292	-128.0
16	0.417	106.1	3.850	-30.1	0.109	-41.6	0.242	-137.0
17	0.443	85.6	3.743	-43.9	0.115	-49.4	0.181	-150.6
18	0.469	66.2	3.562	-57.3	0.119	-57.9	0.124	-171.2
19	0.504	46.1	3.348	-70.8	0.123	-66.8	0.089	145.5
20	0.554	26.7	3.118	-83.8	0.124	-75.4	0.108	94.1
21	0.617	8.0	2.884	-96.8	0.126	-84.0	0.158	67.1
22	0.682	-6.1	2.639	-109.3	0.124	-93.2	0.218	47.1
23	0.750	-16.1	2.415	-121.3	0.123	-101.3	0.279	30.0
24	0.791	-24.6	2.200	-132.7	0.122	-108.4	0.334	16.0
25	0.812	-32.1	1.996	-143.1	0.120	-115.3	0.393	4.6
26	0.844	-39.1	1.830	-152.4	0.119	-122.0	0.442	-3.8

S PARAMETERS (Ta=25°C, VDS=1.5V, VGS=0V)

Recommended foot pattern; RO4350B/Rogers (¿r=3.48, t=0.254mm)

Note

We are ready to provide nonlinear model for ADS and MWO users. If you are interested, please contact our sales offices.

<Low Noise GaAs HEMT> MGF4941CL Micro-X type plastic package

(Reference)

Flow	Item	Comment
9	Wafer Process	
	Wafer Test (DC)	100% Test
	Visual Inspection	
$ \varphi$	Chip Separation	
	Die / Wire bonding	
	Internal Visual Inspection	
$ \varphi$	Sealing	
$ \varphi$	Separation	
	DC Test, Marking	100% Test, Ta=25deg.C
	RF Test (1)	S-parameter, 100% Test, Ta=25deg.C
	RF Test (2)	Noise figure, Sampling Test
	QAT	
6	Taping, Shipping	

Keep safety first in your circuit designs!

• Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire ore property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical in accuracies or typographical errors.

Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishielectric.com/).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole ore in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

• Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 2011 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.